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Abstract

This online appendix provide details on the dataset and the estimation of the

models described in ‘Inflation analysis with semi-structural models’, as well as

additional results and robustness exercises.
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Appendix A Data

A.1 GDP SPF

The Survey of Professional Forecasters includes expectations for real GDP in levels and

growth rates. We decided not to use the official release for the expectation of real GDP

in levels, because it is not adjusted for changes in the basis year, data revisions and in

the seasonal adjustment mechanism.

Instead, we computed the one-year ahead SPF expectation for the growth rates and

we used it jointly with the latest vintage of data available for real GDP to compute an

adjusted prediction for the levels.

Appendix B Adaptive Metropolis-Within-Gibbs

B.1 Algorithm

The estimation algorithm is an improved version of the Metropolis-Within-Gibbs in

Hasenzagl et al. (2022) that employs the Single Component Adaptive Metropolis pro-

posed in Haario et al. (2005).

This hybrid algorithm is structured in two blocks: (1) a Single Component Adaptive

Metropolis (Haario et al., 2005) step for the estimation of the state-space parameters,

(2) a Gibbs sampler (Koopman and Durbin, 2000; Jarociński, 2015) to draw the unob-

served states conditional on the model parameters. Since we have non-stationary unob-

served states, we use the Kalman filter with exact diffuse initial conditions (Koopman and

Durbin, 2000; Durbin and Koopman, 2012) to compute the log-likelihood of the model.

Finally, we used the priors in Hasenzagl et al. (2022).

Algorithm: Adaptive Metropolis-Within-Gibbs

2



Initialisation

Let K := {1, . . . , nk} and denote as P(K) a function that returns a random permutation

of K (uniformly taken from the full set of permutations of K). Let also θ0 be a nk

dimensional vector corresponding to the initial value for the Metropolis parameters.

This vector is associated to a high posterior mass.

Single component adaptive metropolis

let m = 1

for j = 1, . . . , 10000

let Sj = P(K)

for each k in Sj

1. Adaptation: Update the standard deviation of the proposal distribution

σk,j =


1 if j ≤ 10,

exp
(
αk,j−1 − 0.44

)
σk,j−1 otherwise,

where αk,j−1 is the acceptance rate for the iteration j − 1, for the parameter

at position Sk,j. Besides, 44% is the standard target acceptance rate for single

component Metropolis algorithms.

2. New candidate: Generate a candidate vector of parameters θ ∗
m such that

θ ∗
l,m =


θl,m−1 if l ̸= k,

θ
iid∼ N

(
θl,m−1, σk,j

)
otherwise,

for l = 1, . . . , nk.
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3. Accept-reject: Set

θm =


θ ∗

m accept with probability η m,

θm−1 reject with probability 1 − η m,

where

η m := min

1,
p
[
Y | f(θ ∗

m)−1
]

p
[
f(θ ∗

m)−1
]

J(θ ∗
m)

p
[
Y | f(θm−1)−1

]
p
[
f(θm−1)−1

]
J
[
θm−1

]
 ,

f and J are defined below.

4. Increase counter: Increase m by one.

Gibbs sampling

For j > 5000 (burn-in period), use the univariate approach for multivariate time series

of Koopman and Durbin (2000) to the simulation smoother proposed in Durbin and

Koopman (2002) to sample the unobserved states, conditional on the parameters. In

doing so, we follow the refinement proposed in Jarociński (2015).

Burn-in period

Discard the output of the first j = 1, . . . , 5000 iterations.

Jacobian

As in Hasenzagl et al. (2022) most parameters are bounded in their support (e.g. the

variance parameters must be larger than zero). In order to deal with this complexity,

this manuscript transforms the bounded parameters (Θ) so that the support of the

transformed parameters (θ) is unbounded. Indeed, the Adaptive Metropolis-Within-

Gibbs draws the model parameters in the unbounded space. At a generic iteration j,
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the following transformations have been applied to a generic parameter i with a Normal,

Inverse-Gamma or Uniform prior:

θN
i,j = ΘN

i,j

θIG
i,j = ln(ΘIG

i,j − ai)

θU
i,j = ln

(
ΘU

i,j − ai

bi − ΘU
i,j

)
,

where ai and bi are the lower and the upper bounds for the i-th parameter. These

transformations are functions f(Θ) = θ, with inverses f(θ)−1 = Θ given by:

ΘN
i,j = θN

i,j

ΘIG
i,j = exp(θIG

i,j ) + ai

Θ U
i,j =

ai + bi exp(θ U
i,j)

1 + exp(θ U
i,j)

.

These transformations must be taken into account when evaluating the natural logarithm

of the prior densities by adding the Jacobians of the transformations of the variables:

ln
(

dΘN
i,j

dθN
i,j

)
= 0

ln
(

dΘIG
i,j

dθIG
i,j

)
= θIG

i,j

ln
(

dΘU
i,j

dθU
i,j

)
= ln(bi − ai) + θU

i,j − 2 ln(1 + exp(θU
i,j)).
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Appendix C Additional Real-Time Results
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Figure 1: The chart reports the one quarter ahead, real time forecasts of Real GDP from the two
models and compares them to the outturn. The out-of-sample evaluation starts in Jan-2005 and ends in
Sept-2020.

Table 1: The first two rows of this table report the standard deviation of the output gap and potential
output computed across vintages for each reference month and then averaged across reference months.
The last two columns report the maximum absolute value of revisions computed for each reference month
and then averaged across reference months.

Output Gap Potential Output
Undisciplined Tracking Undisciplined Tracking

Mean of std dev 0.54 0.61 6.79 8.33
Mean of std dev (until 2005) 0.5 0.5 5.06 7.28
Mean of max revision 0.91 1.37 16.38 15.09
Mean of max revision (until 2005) 0.46 1.13 9.10 10.93
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Figure 2: The chart reports the one month ahead, real time forecasts of inflation from the two models
and compares them to the outturn. The out-of-sample evaluation starts in Jan-2005 and ends in Sept-
2020.
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Figure 3: The chart compares the output gap estimates from the two models computed using the final
(09/30/2020) data vintage from the out-of-sample forecasting exercise.
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